Indexed by:
Abstract:
In the municipal solid waste (MSW) management system, there are many uncertainties associated with the coefficients and their impact factors. Uncertainties can be normally presented as both membership functions and probabilistic distributions. This study develops a scenario-based fuzzy-stochastic quadratic programming (SFQP) model for identifying an optimal MSW management policy and for allowing dual uncertainties presented as probability distributions and fuzzy sets being communicated into the optimization process. It can also reflect the dynamics of uncertainties and decision processes under a complete set of scenarios. The developed method is applied to a case study of long-term MSW management and planning. The results indicate that reasonable solutions have been generated. They are useful for identifying desired waste-flow-allocation plans and making compromises among system cost, satisfaction degree, and constraint-violation risk. © 2011 Elsevier Inc.
Keyword:
Reprint Author's Address:
Email:
Source :
Applied Mathematical Modelling
ISSN: 0307-904X
Year: 2012
Issue: 6
Volume: 36
Page: 2658-2673
5 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 36
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: