Indexed by:
Abstract:
Sonar imagery plays a significant role in oceanic applications since there is little natural light underwater, and light is irrelevant to sonar imaging. Sonar images are very likely to be affected by various distortions during the process of transmis.sion via the underwater acoustic channel for further analysis. At the receiving end, the reference image is unavailable clue to the complex and changing underwater environment and our unfamiliarity with it. To the best of our knowledge, one of the important usages of sonar images is target recognition on the basis of contour information. The contour degradation degree for a sonar image is relevant to the distortions contained in it. To this end, we developed a new no-reference contour degradation measurement for perceiving the quality of sonar images. The sparsities of a series of transform coefficient matrices, which are descriptive of contour information, are first extracted as features from the frequency and spatial domains. The contour degradation degree for a sonar image is then measured by calculating the ratios of extracted features before and after filtering this sonar image. Finally, a bootstrap aggregating (bagging)-based support vector regression module is learned to capture the relationship between the contour degradation degree and the sonar image quality. The results of experiments validate that the proposed metric is competitive with the state-of-theart reference-based quality metrics and outperforms the latest reference-free competitors.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN: 1057-7149
Year: 2019
Issue: 11
Volume: 28
Page: 5336-5351
1 0 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 32
SCOPUS Cited Count: 47
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: