• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞) | Wang, Lei (Wang, Lei.) | Zhu, Xinxin (Zhu, Xinxin.)

Indexed by:

EI Scopus SCIE

Abstract:

Echo state networks (ESNs) have been widely used in the field of time series prediction. However, it is difficult to automatically determine the structure of ESN for a given task. To solve this problem, the dynamical regularized ESN (DRESN) is proposed. Different from other growing ESNs whose existing architectures are fixed when new reservoir nodes are added, the current component of DRESN may be replaced by the newly generated network with more compact structure and better prediction performance. Moreover, the values of output weights in DRESN are updated by the error minimization-based method, and the norms of output weights are controlled by the regularization technique to prevent the ill-posed problem. Furthermore, the convergence analysis of the DRESN is given theoretically and experimentally. Simulation results demonstrate that the proposed approach can have few reservoir nodes and better prediction accuracy than other existing ESN models.

Keyword:

Dynamical structure Regularization method Time series prediction Echo state network

Author Community:

  • [ 1 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Xinxin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

NEURAL COMPUTING & APPLICATIONS

ISSN: 0941-0643

Year: 2019

Issue: 10

Volume: 31

Page: 6781-6794

6 . 0 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 33

SCOPUS Cited Count: 32

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 14

Online/Total:457/10601547
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.