• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Li (Zhang, Li.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻) | Ge, Zheng (Ge, Zheng.) | Xu, Kechen (Xu, Kechen.)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Anaerobic ammonium oxidation (Anammox) is a cog-effective process for treating highly nitrogenous wastewater. However, the fate of organic nitrogen during Anammox treatment is still unclear, which limits its practical application. In this work, the changes in the quality of dissolved organic nitrogen (DON) in coal liquefaction wastewater (CLW) during Anammox were studied in relation to its chemical composition, which was determined by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The molecular-level characterization of extracellular polymeric substances (EPS) in the Anammox sludge is also reported for the first time in this paper. The relative contribution of N-containing compounds to the total dissolved organic matter (DOM) determined by summating the normalized intensities exceeded 30%, highlighting the complexity of the nitrogenous compounds in the influent. Additionally, Anammox appeared to be better suited to removing DON compounds with fewer carbonyl or carboxyl groups, more aromatic structures, and higher oxidative properties. Lignin-like substances were verified as the predominant component of N-containing compounds in Anammox EPS, followed by protein and substances with condensed aromatic structures. DON compounds with higher degrees of saturation, lower molecular weight, and higher lignin-like properties were more prone to absorption by Anammox EPS. A series of microbe-mediated pathways were demonstrated to be responsible for DON biodegradation, which revealed the organic and inorganic nitrogen removal mechanisms in the Anammox reactor. The obtained results provide great support to the ongoing efforts to optimize the Anammox process.

Keyword:

Dissolved organic nitrogen Extracellular polymeric substances Fourier-transform ion cyclotron resonance Anammox Wastewater

Author Community:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Zheng]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Kechen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China;;[Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENVIRONMENT INTERNATIONAL

ISSN: 0160-4120

Year: 2019

Volume: 131

1 1 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:167

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 38

SCOPUS Cited Count: 40

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:420/10586554
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.