• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, Zhijun (Wu, Zhijun.) | Zhou, Yuan (Zhou, Yuan.) | Fan, Lifeng (Fan, Lifeng.) (Scholars:范立峰)

Indexed by:

EI Scopus SCIE

Abstract:

Due to thermal resistance characteristics of fractures, to realistically assess thermal effects of fractured rock mass, it should correctly reflect the thermal interaction between fracture interfaces. In this study, the coupled FEM-DEM method is extended to model transient thermal conduction in fractured rock mass. Rock matrix and fractures are discretized into solid elements and cohesive elements, respectively. To simulate thermal conduction across fractures, the cohesive element is coupled with a thermal model (thermal-cohesive model) by incorporating an aperture dependent interfacial thermal conductivity. Validation simulations indicate that the proposed model is capable of capturing the temperature jumps across the fractures with different apertures. Then, the influences of fracture characteristics on thermal conduction were numerically investigated. Finally, thermal conduction in highly fractured rock mass was studied by a model with multiple randomly distributed fractures generated through Monte-Carlo algorithm. The results indicate that the temperature gradient and heat flux field of rock mass containing a single fracture are quite sensitive to fracture orientation and aperture. Compared with the linear behavior between the ETC and fracture aperture in rock mass containing a single fracture, the relationship between the ETC and fracture aperture in highly fractured rock mass presents strong nonlinear characteristic.

Keyword:

Fractured rock mass Thermal effects Thermal-cohesive coupled model Transient thermal conduction Coupled FEM-DEM method

Author Community:

  • [ 1 ] [Wu, Zhijun]Wuhan Univ, Sch Civil Engn, Wuhan 430072, Hubei, Peoples R China
  • [ 2 ] [Zhou, Yuan]Wuhan Univ, Sch Civil Engn, Wuhan 430072, Hubei, Peoples R China
  • [ 3 ] [Fan, Lifeng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 范立峰

    [Fan, Lifeng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

COMPUTERS AND GEOTECHNICS

ISSN: 0266-352X

Year: 2019

Volume: 114

5 . 3 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:147

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 15

SCOPUS Cited Count: 18

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:510/10585843
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.