Indexed by:
Abstract:
Linear discriminant analysis (LDA) has been a widely used supervised feature extraction and dimension reduction method in pattern recognition and data analysis. However, facing high-order tensor data, the traditional LDA-based methods take two strategies. One is vectorizing original data as the first step. The process of vectorization will destroy the structure of high-order data and result in high dimensionality issue. Another is tensor LDA-based algorithms that extract features from each mode of high order data and the obtained representations are also high-order tensor. This paper proposes a new probabilistic LDA (PLDA) model for tensorial data, namely, tensor PLDA. In this model, each tensorial data are decomposed into three parts: the shared subspace component, the individual subspace component, and the noise part. Furthermore, the first two parts are modeled by a linear combination of latent tensor bases, and the noise component is assumed to follow a multivariate Gaussian distribution. Model learning is conducted through a Bayesian inference process. To further reduce the total number of model parameters, the tensor bases are assumed to have tensor CandeComp/PARAFAC (CP) decomposition. Two types of experiments, data reconstruction and classification, are conducted to evaluate the performance of the proposed model with the convincing result, which is superior or comparable against the existing LDA-based methods.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
Year: 2019
Issue: 10
Volume: 30
Page: 2938-2950
1 0 . 4 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:147
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9