Indexed by:
Abstract:
Herein, a quantum dot random laser was achieved using a silicon nanowire array. The silicon nanowire array was grown by a metal-assisted chemical etching method. A colloidal quantum dot solution was spin-coated on silicon nanowires to form the random laser. The performance of the random laser was controlled by the resistivity of silicon wafers and the length of silicon nanowires. A transition from incoherent random lasing to coherent random lasing was obtained by increasing the resistivity of the silicon wafers. The random lasing threshold increased with an increase in the length of the silicon nanowires. These results may be useful to explore high-performance silicon-based random lasers.
Keyword:
Reprint Author's Address:
Email:
Source :
RSC ADVANCES
Year: 2019
Issue: 49
Volume: 9
Page: 28642-28647
3 . 9 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:166
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: