Indexed by:
Abstract:
In this paper, we investigate systematically the vibration of a typical 2DOF nonlinear system with repeated linearized natural frequencies. By application of Descartes' rule of signs, we demonstrate that there are 14 types of roots describing different modal motions for varying nonlinear parameters. The method of multiple scales is used to obtain the amplitude-phase portraits by introducing the energy ratios and phase differences. The typical nonlinear in-unison and elliptic out-of-unison modal motions are located for the 14 types of roots and then validated by numerical simulations. It is found that the normal in-unison modal motions, elliptic out-of-unison modal motions are analogous to the polarization of classical optic theory. Further, some kinds of periodic and chaotic motions under out-of-unison and in-unison excitations are investigated numerically. The result of this study offers a detailed discussion of nonlinear modal motions and responses of 2DOF systems with cubic nonlinear terms.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN: 0218-1274
Year: 2019
Issue: 10
Volume: 29
2 . 2 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: