• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Hong-Gui (Han, Hong-Gui.) (Scholars:韩红桂) | Liu, Hong-Xu (Liu, Hong-Xu.) | Liu, Zheng (Liu, Zheng.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (Scholars:乔俊飞)

Indexed by:

EI Scopus SCIE

Abstract:

Fault detection is important in the operation of wastewater treatment process (WWTP). In this paper, to ensure the process safety and effluent qualities, an intelligent fault detection (IFD) method, based on self-organizing type-2 fuzzy-neural-network (SOT2FNN) and intelligent identification method, was developed to detect and identify different types of sludge bulking. The main advantages of IFD are as follows. First, a data-driven framework, based on a data-driven model and an intelligent identification algorithm, was developed to facilitate the fault diagnosis. Second, a SOT2FNN, based on the intensity of information transmission algorithm and adaptive second-order algorithm, was designed to predict the sludge volume index (SW) with high accuracy to provide necessary information for process monitoring. Third, an intelligent identification method, using the target-related identification algorithm (TRIA), was proposed to extract the correlation information to identify the types of sludge bulking. Finally, simulations and experimental examples were provided to confirm the effectiveness of the proposed IFD method.

Keyword:

Self-organizing type-2 fuzzy-neural-network Target-related identification algorithm Sludge bulking Sludge volume index Intelligent fault detection method

Author Community:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

CONTROL ENGINEERING PRACTICE

ISSN: 0967-0661

Year: 2019

Volume: 90

Page: 27-37

4 . 9 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

Cited Count:

WoS CC Cited Count: 33

SCOPUS Cited Count: 35

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 13

Online/Total:736/10529019
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.