Indexed by:
Abstract:
Fault detection is important in the operation of wastewater treatment process (WWTP). In this paper, to ensure the process safety and effluent qualities, an intelligent fault detection (IFD) method, based on self-organizing type-2 fuzzy-neural-network (SOT2FNN) and intelligent identification method, was developed to detect and identify different types of sludge bulking. The main advantages of IFD are as follows. First, a data-driven framework, based on a data-driven model and an intelligent identification algorithm, was developed to facilitate the fault diagnosis. Second, a SOT2FNN, based on the intensity of information transmission algorithm and adaptive second-order algorithm, was designed to predict the sludge volume index (SW) with high accuracy to provide necessary information for process monitoring. Third, an intelligent identification method, using the target-related identification algorithm (TRIA), was proposed to extract the correlation information to identify the types of sludge bulking. Finally, simulations and experimental examples were provided to confirm the effectiveness of the proposed IFD method.
Keyword:
Reprint Author's Address:
Email:
Source :
CONTROL ENGINEERING PRACTICE
ISSN: 0967-0661
Year: 2019
Volume: 90
Page: 27-37
4 . 9 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
Cited Count:
WoS CC Cited Count: 33
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13