Indexed by:
Abstract:
Purpose Based on the base force element method, a two-dimensional random circle aggregate model with Monte Carlo principle is proposed to carry out research on softening curve in meso-level. Design/methodology/approach The meso-level structure of recycled concrete is considered as the five-phase materials composed of aggregate, old interfacial transition zone, old mortar, new interfacial transition zone and new mortar. A multi-polyline damage model is adopted to describe the nonlinear mechanical behavior of recycled concrete material. The destruction state of the element is determined by the first strength theory. The research studies on damage process of recycled concrete under the loading conditions of uniaxial tension were established using the base force element method. Findings The softening curves of recycled concrete are obtained, which are in good agreement with experiment results. Simulation results show that the macroscopic mechanical properties and failure mechanism can analyze more reasonably from mesoscopic structure. Besides that, it can be investigated from the numerical results of the size effect in recycled concrete through the mesoscopic heterogeneity. Furthermore, the form of aggregate distribution has influence on the crack path but little effect on the tensile strength of recycled concrete. Originality/value The results show that the base force element method has been successfully applied to the study of softening curve of recycled concrete under uniaxial tension.
Keyword:
Reprint Author's Address:
Email:
Source :
ENGINEERING COMPUTATIONS
ISSN: 0264-4401
Year: 2019
Issue: 7
Volume: 36
Page: 2414-2429
1 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: