Indexed by:
Abstract:
In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs. © 2020 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2020
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: