Indexed by:
Abstract:
With the rapid development of the information technologies in the financial field, extracting meaningful information from a massive amount of data is hugely significant for efficient business decision making. The recommendation system is an intelligent system that applies historical knowledge of users to infer their preferences and make a personalized recommendation. However, it suffers from the problem of time effect of user's behaviour, which means a user's interests may change over time. To overcome this problem, we propose a time effect based collaborative filtering approach to adaptively statistics the change of user preferences. Firstly, Item-based collaborative filtering is used to calculate rating similarity between items. Since an Item-based collaborative filtering algorithm doesn't consider the time effect; next, the time decay function is proposed to statistics the change of user interests. Experimental results show that the proposed scheme retained higher accuracy compare to traditional collaborative filtering method. © Published under licence by IOP Publishing Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1742-6588
Year: 2020
Issue: 1
Volume: 1453
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: