Indexed by:
Abstract:
Arguably the rapid development of Internet financial is one of the most significant breakthroughs in the financial domain. Automated financial statistics have gradually substituted the traditional manual statistical methods, providing a reliable data basis for economic planning. Therefore, the quality of a business activity heavily relies on the accuracy analysis of user preferences and recommend rated products to the users. Traditional item-based collaborative filtering method plays a dominant role for analyzing user preference and recommending the items for users, this method mainly utilize the fully rating data to predict whether the user like the target item. However, in many cases, the available user rating data is sparsely, which makes traditional item-based collaborative filtering method inefficient and inapplicable. To address this problem, this paper propose an ontology-based user preference statistical model (ontology-based UPS), where the concept and attribute features are extracted from financial ontology for semantic similarity computing; later, it is combined with the calculated rating similarities to improve the accuracy of the similar item set for the target item. The research results show that our approach outperformed traditional collaborative filtering method. © 2020, Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Source :
ISSN: 1876-1100
Year: 2020
Volume: 551 LNEE
Page: 352-361
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: