Indexed by:
Abstract:
Named entity recognition is an important and basic work in text mining. To overcome the shortcomings of existing multi-domain named entity recognition methods, a multi-domain named entity recognition method based on the part-of-speech attention mechanism, called BiLSTM-ATTENTION-CRF, was proposed in this paper. The domain dictionary was constructed to represent multi-domain semantic information and the BiLSTM network was used to capture the grammatical and syntactic features, as well as multi-domain semantic features in context information. A part-of-speech attention mechanism was designed to obtain the contribution weight of part-of-speech for entity recognition. Finally, a group of experiments were performed on the multi-domain dataset to compare various fusion strategies of multi-level entity information. The experimental results show that BiLSTM-ATTENTION-CRF has a high precision and recall rate, and can effectively recognizes the multi-domain named entities. © 2019, Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2019
Volume: 1042 CCIS
Page: 631-644
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: