Indexed by:
Abstract:
Cervical cancer is a major threat to women’s health and there is a huge population suffering from it in the world. Colposcopy screening is one of the important methods for early diagnosis of cervical cancer. In this paper, we propose a method based on deep learning for colposcopy images recognition, which could be used for early screening of cervical cancer. The method is mainly composed of two parts, the segmentation of the diseased tissue in the colposcopy image and the classification of the image. In our method, the U-Net is used to extract the ROI of images and a deep convolutional neural network is designed to extract features for classification of the ROI. In addition, we introduce the spatial attention mechanism to make the neural network pay more attention to the diseased tissue in images. Experiments demonstrate that the proposed method has a good performance on the colposcopy images, and even achieve nearly test accuracy of 68.03%, which is better than others by ∼6%. © Springer Nature Switzerland AG 2019.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2019
Volume: 11858 LNCS
Page: 267-278
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: