• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dong, Huihui (Dong, Huihui.) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力) | Han, Qiang (Han, Qiang.) (Scholars:韩强) | Bi, Kaiming (Bi, Kaiming.) | Hao, Hong (Hao, Hong.)

Indexed by:

EI Scopus SCIE

Abstract:

Bridges are lifeline structures. The large residual displacement of a bridge structure after a severe earthquake can significantly impede the post-quake rescue activities. The self-centering buckling-restrained brace (SC-BRB) consisting of a self-centering (SC) component and a traditional buckling-restrained brace (BRB) is installed on the reinforced concrete (RC) double-column bridge piers to minimize the residual deformation of the bridge pier in the present study. The hysteretic behavior of the SC-BRB is experimentally investigated firstly, and compared with those of a traditional BRB and a self-centering brace (SCB). SC-BRB, BRB and SCB are then installed onto the RC double-column bridge piers, and large-scale quasi-static cyclic loading tests are performed to evaluate the hysteretic performances of these bridge piers. For comparison, the bridge pier without any brace is also tested. The damage patterns, hysteretic responses, residual displacements and energy dissipation capacities of the piers without and with different braces are analyzed and compared systematically. Experimental results demonstrate the obvious advantages of SC-BRB in increasing the strength and minimizing the residual deformation of the bridge column. Finally, a simplified hysteretic restoring force model for evaluating the hysteretic behavior of the pier with SC-BRB is developed for easy use. The comparisons between the analytical results and experimental data demonstrate the accuracy of the analytical model.

Keyword:

RC double-column bridge pier Residual displacement Seismic performance SC-BRB Hysteretic behavior

Author Community:

  • [ 1 ] [Dong, Huihui]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Qiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Bi, Kaiming]Curtin Univ, Sch Civil & Mech Engn, Ctr Infrastruct Monitoring & Protect, Bentley, WA 6102, Australia
  • [ 5 ] [Hao, Hong]Curtin Univ, Sch Civil & Mech Engn, Ctr Infrastruct Monitoring & Protect, Bentley, WA 6102, Australia

Reprint Author's Address:

  • 韩强

    [Han, Qiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

BULLETIN OF EARTHQUAKE ENGINEERING

ISSN: 1570-761X

Year: 2019

Issue: 6

Volume: 17

Page: 3255-3281

4 . 6 0 0

JCR@2022

ESI Discipline: GEOSCIENCES;

ESI HC Threshold:123

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 66

SCOPUS Cited Count: 72

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Online/Total:1183/10613811
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.