• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liang, Feng (Liang, Feng.) | Li, Zhen (Li, Zhen.) | Yang, Xiao-Dong (Yang, Xiao-Dong.) (Scholars:杨晓东) | Zhang, Wei (Zhang, Wei.) | Yang, Tian-Zhi (Yang, Tian-Zhi.)

Indexed by:

EI Scopus SCIE CSCD

Abstract:

In this paper, the coupled bending-bending-axial-torsional free vibrations of rotating blades are investigated based on the Euler-Bernoulli beam model. The coupled partial differential equations governing flapwise, edgewise, axial and torsional motions are derived by the Hamilton's principle, wherein three types of velocity-dependent terms, namely static centrifugal terms, dynamic centrifugal terms and gyroscopic coupling terms, are focused. The ordinary differential equations are acquired by the Galerkin truncation, and the natural frequencies in all directions and complex mode shapes of the rotating blades are analyzed in detail. It is revealed that the three types of velocity-dependent terms have different effects on the natural frequencies. The natural frequencies are noticeably dependent on the rotating speed and preset angle, except for the axial vibration, which is almost immune to the preset angle. The complex modal motions are displayed by a series of positions of the central line and free-end cross section for different time instants, showing the coupled vibrations among different directions.

Keyword:

Complex modes Coupled vibrations Rotating blades Gyroscopic coupling Preset angle

Author Community:

  • [ 1 ] [Liang, Feng]Yangzhou Univ, Coll Mech Engn, Yangzhou 225127, Jiangsu, Peoples R China
  • [ 2 ] [Liang, Feng]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Zhen]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Tian-Zhi]Shenyang Aerosp Univ, Dept Engn Mech, Shenyang 110136, Liaoning, Peoples R China

Reprint Author's Address:

  • 杨晓东

    [Liang, Feng]Yangzhou Univ, Coll Mech Engn, Yangzhou 225127, Jiangsu, Peoples R China;;[Liang, Feng]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China;;[Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn & Appl Elect, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

ACTA MECHANICA SOLIDA SINICA

ISSN: 0894-9166

Year: 2019

Issue: 3

Volume: 32

Page: 326-338

2 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 12

SCOPUS Cited Count: 11

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:162/10623316
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.