Indexed by:
Abstract:
The concurrent production of COx-free hydrogen and multi-walled carbon filaments by thermocatalytic decomposition of methane is advantageous in the environmental and energy catalysis. In the present work, a facile "one-pot" evaporation-induced self-assembly strategy was effectively adopted to fabricate the nickel catalysts supported on mesoporous Al2O3, SiO2, TiO2, and MgO, and their catalytic activities for methane decomposition were evaluated for the first time. The structural, textural, and redox properties of the as-obtained materials were characterized using a number of analytical techniques. The nitrogen sorption analysis indicated the presence of a mesoporous structure due to homogeneous aggregation of the catalyst particles with a high specific surface area of 32-236 m(2)/g. Among all of the catalysts, Ni/MgO exhibited the best catalytic activity for methane decomposition (65% methane conversion at 600 degrees C and GHSV of 48,000 mL/(g h)). The activity increased when Ni loading increased from 25 to 55 wt%. The investigation on the correlation between catalytic performance and promoter doping effect suggests that incorporating copper into the MgO support considerably enhanced the catalytic activity and stability at high temperatures. The XPS results reveal that doping of Cu to Ni/MgO enhanced the adsorption and activation of oxygen molecules. In addition, the disordered crystalline carbon filaments with different diameters and good crystallinity were generated on the surface of the Cu-doped Ni/MgO catalysts.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2019
Volume: 478
Page: 581-593
6 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:211
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 80
SCOPUS Cited Count: 77
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4