Indexed by:
Abstract:
Echo state network (ESN), a novel recurrent neural network, has a randomly and sparsely connected reservoir. Since the reservoir is very large, the collinearity problem may exist in ESN. To overcome this problem and get a sparse architecture, an adaptive lasso echo state network (ALESN) is proposed, in which the adaptive lasso algorithm is used to calculate the output weights. The proposed ALESN can deal with the collinearity problem and has the oracle property. Simulation results show that the proposed ALESN has better performance and more compact architecture than some other existing methods. © 2017 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2017
Volume: 2017-January
Page: 5108-5111
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12