• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, Shanshan (Zhou, Shanshan.) | Li, Wenjing (Li, Wenjing.) | Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞)

Indexed by:

EI Scopus

Abstract:

The prediction of PM2.5 is difficult because the variation of PM2.5 concentration is a nonlinear dynamic process. Therefore, a recurrent fuzzy neural network prediction method is proposed to predict the PM2.5 concentration in this paper. Firstly, the partial least squares (PLS) algorithm is used to select key input variables as a preprocessing step. Then, a recurrent fuzzy neural network model is established and the gradient descent algorithm with an adaptive learning rate is used to train the neural network. Simulation results show that the recurrent neural network has better prediction performance and higher interpretability than fuzzy neural network (FNN) and radial-basis function (RBF) feed forward neural network. © 2017 Technical Committee on Control Theory, CAA.

Keyword:

Author Community:

  • [ 1 ] [Zhou, Shanshan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhou, Shanshan]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Li, Wenjing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Wenjing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

ISSN: 1934-1768

Year: 2017

Page: 3920-3924

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 22

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:454/10593083
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.