Indexed by:
Abstract:
To describe the thermal stability of the nanocrystalline solid solution with weak segregation such as Cu-Zn system, we developed a hybrid model combining the first principles calculation and thermodynamic evaluation. The dependence of the solute segregation behavior on the solute concentration, grain size and temperature were demonstrated. We found that the segregation energy does not change with the solute concentration monotonically. At a constant solute concentration and a given temperature, a nanograin structure can remain stable if the initial grain size is kept in a critical range. The model predictions were confirmed by the experimental measurements that a state of steady nanograin growth can be achieved by designing a certain solute concentration and a proper initial grain size. © 2017 Trans Tech Publications, Switzerland.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1012-0386
Year: 2017
Volume: 381 DDF
Page: 33-38
Language: English
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: