• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Hu, Zhiqiang (Hu, Zhiqiang.) | Li, Wenjing (Li, Wenjing.) | Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞)

Indexed by:

EI Scopus

Abstract:

PM2.5 is difficult to accurately forecast due to the influence of multiple meteorological and pollutant variables in the complex nonlinear dynamic atmosphere system. In this paper, an Elman neural network prediction method based on chaos theory is put forward for the problem. Firstly, the chaotic characteristics of the concentration of the PM2.5 are analyzed and verified from the correlation dimension, the maximum Lyapunov exponent and the Kolmogorov entropy. Then, phase space reconstruction technique of chaotic theory is adopted to reconstruct the phase space of PM2.5 time series. The reconstructed phase space and the future concentration of PM2.5 are taken as the input and output of the Elman neural network with chaos theory (Elman-chaos) respectively. The numerical and experimental analyses show that this method is proportionally superior to that without considering the chaos characteristics and other approaches. The Elman-chaos prediction model has better prediction performance and application value. © 2016 TCCT.

Keyword:

Author Community:

  • [ 1 ] [Hu, Zhiqiang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Hu, Zhiqiang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Li, Wenjing]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Wenjing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

ISSN: 1934-1768

Year: 2016

Volume: 2016-August

Page: 3573-3578

Language: English

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 12

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:2349/10895486
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.