Indexed by:
Abstract:
This paper presents an experimental study on the dynamics and vibration control of a high-speed manipulator. Light weight and high-speed manipulators are flexible structures, vibration will be unavoidable due to motion of inertial components or uncertainty disturbance excitation. To solve this problem, input shaping feed forward controller is adopted to suppress vibration of a flexible smart manipulator. Also, multi-mode positive position feedback (PPF) controller is designed with piezoelectric actuator, for suppressing the lower amplitude vibration near the equilibrium point significantly. Especially, the experiment setup that includes the test-bed mechanism of a flexible planar parallel smart manipulator and the hardware and software structures of the control system are then developed. Experimental research is conducted to show that the adopted input shaping algorithm can substantially suppress the larger amplitude vibration, and the PPF controller can also damp out the lower amplitude vibration significantly. The experimental results demonstrate that the proposed controllers can suppress vibration effectively. © Springer-Verlag Berlin Heidelberg 2014.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2194-5357
Year: 2014
Volume: 214
Page: 599-609
Language: English
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: