Indexed by:
Abstract:
Feature selection is an effective machine learning method for reducing dimensionality, removing irrelevant features, increasing learning accuracy, and improving result comprehensibility. However, many existing feature selection methods are incapable for high dimensional data because of their high time complexity, especially wrapper feature selection algorithms. In this work, a fast sequential feature selection algorithm (AP-SFS) is proposed based on affinity propagation clustering. AP-SFS divides the original feature space into several subspaces by a cluster algorithm, then applies sequential feature selection for each subspace, and collects all selected features together. Experimental results on several benchmark datasets indicate that AP-SFS can be implemented much faster than sequential feature selection but has comparable accuracies. © 2013 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2157-9555
Year: 2013
Page: 848-852
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: