Indexed by:
Abstract:
Due to image noise, illumination and occlusion, to get an accurate and dense disparity with stereo matching is still a challenge. In this paper, a new dense stereo matching algorithm is proposed. The proposed algorithm first use cross-based regions to compute an initial disparity map which can deal with regions with less or similar texture. Secondly, the improved hierarchical belief propagation scheme is employed to optimize the initial disparity map. Then the left-right consistency check and mean-shift algorithm are used to handle occlusions. Finally, a local high-confidence strategy is used to refine the disparity map. Experiments with the Middlebury dataset validate the proposed algorithm. © 2013 Springer-Verlag.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2013
Issue: PART 5
Volume: 8008 LNCS
Page: 171-177
Language: English
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: