• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Cao, Dongxing (Cao, Dongxing.) (Scholars:曹东兴) | Guo, Xiangying (Guo, Xiangying.) | Hu, Wenhua (Hu, Wenhua.)

Indexed by:

EI Scopus SCIE

Abstract:

The transformation of waste vibration energy into low-power electricity has been intensely researched over the last decade to enable self-sustained wireless electronic components. Many kinds of nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. The negative stiffness vibration isolator, as a kind of passive vibration isolator, has undergone extensive investigation because of its low-frequency isolator characteristics. In this article, a novel broadband piezoelectric vibration energy harvester, which can be used for low-frequency ambient mechanical energy harvesting, is designed, and its dynamic responses are analyzed based on the advantage of the negative stiffness vibration isolator. The multi-scale perturbation method is applied to solve the electromechanical equations of the piezoelectric vibration energy harvester and obtain approximate analytical solutions. Solutions based on the analytical method and numerical simulations reveal the characteristics of significant broadband performance. The effects of the various system parameters on the frequency responses and output voltage of the piezoelectric vibration energy harvester system are investigated in detail, and the vibration isolation ability is verified by experimental measurements. It was concluded that the proposed piezoelectric vibration energy harvester achieved broadband vibration energy harvesting in the low-frequency vibration range.

Keyword:

low frequency broadband negative stiffness vibration isolator Vibration energy harvesting

Author Community:

  • [ 1 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Xiangying]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Wenhua]Tianjin Univ Technol, Sch Mech Engn, Tianjin, Peoples R China

Reprint Author's Address:

  • 曹东兴

    [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES

ISSN: 1045-389X

Year: 2019

Issue: 7

Volume: 30

Page: 1105-1114

2 . 7 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:211

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 26

SCOPUS Cited Count: 32

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Online/Total:942/10619320
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.