Indexed by:
Abstract:
Using glucose as cosubstrate, activated sludge that could effectively biodegrade 40 mg/L 2-chlorophenol was successfully domesticated in sequencing batch reactors. To acclimate the sludge, 2-chlorophenol was increased stepwise from 0 to 40 mg/L. High-throughput sequencing revealed that the microbial community richness increased during the first 5 days of acclimation to 5 mg/L 2-chlorophenol and then decreased after another 20 days as 2-chlorophenol was increased. The original sludge obtained from a water resource recovery facility had the highest microbial diversity. As the acclimation continued further, community richness and diversity both increased, but they decreased again, significantly, when 2-chlorophenol reached 40 mg/L. Saccharibacteria_norank, Bacillus, Saprospiraceae_uncultured, and Lactococcus were the dominant bacteria. Bacillus and Pseudomonas were the main known chlorophenol-degrading bacteria. WCHB1-60_norank, Tetrasphaera, Comamonadaceae_unclassifled, and Haliangium showed poor tolerance to 2-chlorophenol. Higher bacterial tolerance to chlorophenols does not mean higher degrading capability. The degradation of chlorophenols was not positively correlated with the detected abundance of known 2-chlorophenol-degrading bacteria. (C) 2019 Water Environment Federation
Keyword:
Reprint Author's Address:
Email:
Source :
WATER ENVIRONMENT RESEARCH
ISSN: 1061-4303
Year: 2019
Issue: 4
Volume: 91
Page: 273-280
3 . 1 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:167
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9