Indexed by:
Abstract:
Sparse representation for face recognition has been exploited in past years. Several sparse representation algorithms have been developed. In this paper, a novel eyeglasses-face recognition approach, SEMD Based Sparse Gabor Representation, is proposed. Firstly, for a robust representation to misalignment, a sparse Gabor representation is proposed. Secondly, spatially constrained earth mover's distance is employed instead of Euclidean distance to measure the similarity between original data and reconstructed data. The proposed algorithm for eyeglasses-face recognition has been evaluated under different eyeglasses-face databases. The experimental results reveal that the proposed approach is validity and has better recognition performance than that obtained using other traditional methods. © 2011 Springer-Verlag.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2011
Issue: PART 2
Volume: 6754 LNCS
Page: 201-211
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12