Indexed by:
Abstract:
A multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D. (C) 2018 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
APPLIED SOFT COMPUTING
ISSN: 1568-4946
Year: 2019
Volume: 74
Page: 190-205
8 . 7 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:147
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 35
SCOPUS Cited Count: 39
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: