Indexed by:
Abstract:
The tensor completion issues have obtained a great deal of attention in the past few years. However, the data fidelity part minimizes a squared loss function, which may be inappropriate for the case of noisy one-bit observations. In this paper, we alleviate the mentioned difficulty by drawing on the experience of matrix scenarios. Based on the convex relation to L-1 norm of the tensor multi-rank, we propose a novel optimization model trying to recover the underlying tensor in case of one-bit observations. The feasibility of this model is proved by theoretical derivations. Furthermore, an alternating direction method of multipliers based algorithm is designed to find the solution. The numerical experiments demonstrate the effectiveness of our method.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN: 1057-7149
Year: 2019
Issue: 1
Volume: 28
Page: 170-180
1 0 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:136
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: