• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Pei (Chen, Pei.) | Zhang, Zhiwei (Zhang, Zhiwei.) | An, Tong (An, Tong.) | Yu, Huiping (Yu, Huiping.) | Qin, Fei (Qin, Fei.) (Scholars:秦飞)

Indexed by:

EI Scopus SCIE

Abstract:

Residual stress generated in grinding process of monocrystalline silicon can cause the wafer warpage, and difficulties in subsequent processes such as holding and scribing. It can also lead to the formation of cracks and the occurrence of corrosion, which is harmful for electrical performance of silicon component. In this study, with the method of step-wire wet etching, the phase transformation and distribution of residual stress in ground silicon wafer were examined by confocal laser micro-Raman spectroscopy. As the etching depth going down, the residual stress exhibits in the trends of decreasing of compressive stress and following a scatter distribution of tensile stress. During the nano-grinding processes of monocrystalline silicon, the generation mechanism of residual stress is computed by a series of the molecular dynamic (MD) simulation. Subsurface damage (SSD) in the form of phase-transformed silicon is observed, and the depth of SSD varies by the depth of cut. The volume shrinkage of phase-transformed silicon is also studied to explain the grinding mechanism and the reason for inducing residual stress of ground silicon. By adopted the Stony theory and volume shrinkage rate of amorphous phase from MD results, a theoretical model is established to determine the trend of compressive stress in subsurface of ground silicon. (C) 2018 The Japan Society of Applied Physics

Keyword:

Author Community:

  • [ 1 ] [Chen, Pei]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Zhiwei]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [An, Tong]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yu, Huiping]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qin, Fei]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Chen, Pei]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 7 ] [An, Tong]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Qin, Fei]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Chen, Pei]Beijing Univ Technol, Inst Elect Packaging Technol & Reliabil, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China;;[Chen, Pei]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JAPANESE JOURNAL OF APPLIED PHYSICS

ISSN: 0021-4922

Year: 2018

Issue: 12

Volume: 57

1 . 5 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:145

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 18

SCOPUS Cited Count: 21

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Online/Total:458/10633433
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.