Indexed by:
Abstract:
Constrained submodular maximization (CSM) is widely used in numerous data mining and machine learning applications such as data summarization, network monitoring, exemplar-clustering, and nonparametric learning. The CSM can be described as: Given a ground set, a specified constraint, and a submodular set function defined on the power set of the ground set, the goal is to select a subset that satisfies the constraint such that the function value is maximized. Generally, the CSM is NP-hard, and cardinality constrained submodular maximization is well researched. The greedy algorithm and its variants have good performance guarantees for constrained submodular maximization. When dealing with large input scenario, it is usually formulated as streaming constrained submodular maximization (SCSM), and the classical greedy algorithm is usually inapplicable. The streaming model uses a limited memory to extract a small fraction of items at any given point of time such that the specified constraint is satisfied, and good performance guarantees are also maintained. In this chapter, we list the up-to-date popular algorithms for streaming submodular maximization with cardinality constraint and its variants, and summarize some problems in streaming submodular maximization that are still open. © 2019, Springer Nature Switzerland AG.
Keyword:
Reprint Author's Address:
Email:
Source :
Springer Optimization and Its Applications
Monograph name: Springer Optimization and Its Applications
ISSN: 1931-6828
Volume: 147
Issue: Springer International Publishing
Language: English
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: