• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Hong, Cuiyue (Hong, Cuiyue.) | Zhang, Xinping (Zhang, Xinping.) (Scholars:张新平)

Indexed by:

EI Scopus SCIE

Abstract:

A 2D dielectric grating produced by photolithography was employed as a microlens array (MLA), which was based on a smooth surface and a shape that may be defined roughly as a hemisphere of each lattice. Such a 2D MLA can focus an incident ultraviolet light beam into a matrix of light spots, which were estimated to be as small as 500 nm in diameter. Using a thin layer of photoresist (PR) to record the pattern of the focusing spots, we achieved an approximately inversed structure of periodically arranged holes in PR in submicron sizes. Filling these holes with gold using chemically synthesized colloidal gold nanoparticles produced a plasmonic grating consisting of gold nanoparticles larger than 580 nm in average diameter. Localized surface plasmon resonance in both first and second orders was observed, which was verified by the spectroscopic response and theoretical simulations. MLA can be thus repeatedly used as a master to produce plasmonic photonic structures with high reproducibility.

Keyword:

localized surface plasmons metallic photonic structures photolithography dipolar and quadrupolar plasmons microlens array

Author Community:

  • [ 1 ] [Hong, Cuiyue]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Xinping]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Hong, Cuiyue]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Xinping]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 张新平

    [Zhang, Xinping]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China;;[Zhang, Xinping]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

NANOPHOTONICS

ISSN: 2192-8606

Year: 2018

Issue: 11

Volume: 7

Page: 1819-1825

7 . 5 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:145

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 6

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:550/10648185
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.