Indexed by:
Abstract:
As a simple classification method VSM has been widely applied in text information processing field. There are some problems for traditional VSM to select a refined vector model representation, which can make a good tradeoff between complexity and performance, especially for incremental text mining. To solve these problems, in this paper, several improvements, such as VSM based on improved TF, TFIDF and BM25, are discussed. And then maximum mutual information feature selection is introduced to achieve a low dimension VSM with less complexity, and at the same time keep an acceptable precision. The experimental results of spam filtering and short messages classification shows that the algorithm can achieve higher precision than existing algorithms under same conditions. © 2008 American Institute of Physics.
Keyword:
Reprint Author's Address:
Email:
Source :
AIP Conference Proceedings
ISSN: 0094-243X
Year: 2008
Volume: 1060
Page: 369-373
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1