• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Xiaoting (Li, Xiaoting.) | Wang, Naixin (Wang, Naixin.) (Scholars:王乃鑫) | Huang, Zheng (Huang, Zheng.) | Zhang, Lilong (Zhang, Lilong.) | Xie, Ya-Bo (Xie, Ya-Bo.) (Scholars:谢亚勃) | An, Quan-Fu (An, Quan-Fu.) (Scholars:安全福) | Ji, Shulan (Ji, Shulan.) (Scholars:纪树兰)

Indexed by:

EI Scopus SCIE

Abstract:

Molecular sieve-based membranes are considered to be promising for achieving both high selectivity and permeability. Layered double hydroxides (LDHs) are typical two-dimensional crystalline compounds with highly uniform interlayer galleries that can be used to construct efficient molecular transport pathways. Herein, vertically channeled laminates are constructed on a tubular alumina substrate using CoAl-LDH as building blocks. Good-quality laminates are crystallized by direct nucleation and growth onto the alumina, in which alumina substrates act as both reactants and supports. Vertically aligned interlayer galleries are formed as sieving and transport channels for water molecules with the oriented nucleation effect of NH4F. Compared with the zigzag pathways formed by two dimensional materials parallel to the substrate, the straight vertical channels have higher molecular transfer efficiency. As a result, the robust CoAl-LDH membranes show much higher and more stable organic solvent dehydration performance than most membranes under a wide range of feed conditions. This work thus demonstrates that LDH-based composite membranes are highly promising as the next generation of membranes for molecular sieving.

Keyword:

Author Community:

  • [ 1 ] [Li, Xiaoting]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Naixin]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Zheng]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Lilong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Xie, Ya-Bo]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [An, Quan-Fu]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 7 ] [Ji, Shulan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 王乃鑫

    [Wang, Naixin]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF MATERIALS CHEMISTRY A

ISSN: 2050-7488

Year: 2018

Issue: 37

Volume: 6

Page: 18095-18102

1 1 . 9 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:260

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 21

SCOPUS Cited Count: 22

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:628/10633738
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.