Indexed by:
Abstract:
In recent years, the use of deep learning in remote sensing domain has made it possible to automate mapping in large-scale. In this paper, we propose a transfer learning method which pre-train a convolutional neural network (CNN) with middle-resolution remote sensing data in 2016, and fine-tune it in following years with a spot of high-resolution remote sensing data in 2017. We used the fine-tuned model to mapping the early-rice in 25 countries which cost only 21 minutes, and yielded an overall accuracy of 81.68%. The result demonstrate that the convolutional neural network model can transfer in different time period with little adjustment in a very high accuracy. © 2018 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
International Geoscience and Remote Sensing Symposium (IGARSS)
Year: 2018
Volume: 2018-July
Page: 1136-1139
Language: English
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 16
Affiliated Colleges: