Indexed by:
Abstract:
Low-cost catalysts possessing merits of high conductivity and plenty of active sites are highly desirable for the developing of Pt-free counter electrode (CE) in dye-sensitized solar cells (DSCs). In this study, porous sulfur-doped reduced graphene oxide/MoS2 (S-rGO/MoS2) composites were successfully synthesized via a simple one-step annealing strategy employing CS2 as sulfur source. Electrochemical measurements revealed that the as-prepared composite presented a superior catalytic activity on the triiodide reduction process, comparable with Pt electrode. Under optimized conditions, a power conversion efficiency of 6.96% was achieved for the N719-sensitized solar cell with a S-rGO/MoS2 CE, which is very close to that for the device containing a thermally deposited Pt CE (7.35%). The outstanding electro-catalytic activity of composite was attributed to the exposed numerous edges providing much more active sites, and good conductivity resulting from two-dimensional conductive networks of both S-rGO and MoS2. This work demonstrated S-rGO/MoS2 composite as a promising alternative for noble metal Pt in triiodide reduction process and a simple approach of employing two-dimensional nanomaterials as multifunctional materials in photovoltaic for mass application. (C) 2018 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2018
Volume: 452
Page: 232-238
6 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 38
SCOPUS Cited Count: 38
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: