• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, G. (Liu, G..) | Pan, Y. (Pan, Y..) | Fu, W. (Fu, W..) | Qiao, A. (Qiao, A..)

Indexed by:

Scopus PKU CSCD

Abstract:

Objective To explore the effect of different initial state setting on a valve simulation. Methods Two-dimensional structural models were established with the initial state of the aortic valve being partially closed in one model and fully opened in the other. The time-dependent load was applied to the valve and the vessel wall of the aortic and the ventricle sides. The finite element method was used to study the maximum stress, the length of the joint, and the contact force of the closed aortic valve under two different initial states. Results The stress and contact force of the aortic valve were relatively large at the closed position when the initial state was fully opened. The closure degree of the valve was low, and the variations in stress and closure degree were large during the periodic cycle. The stress and contact force of the valve were relatively small when the aortic valve was partially closed. The closure degree was high, and the variations in stress and closure degree of the aortic valve were small during the periodic cycle. Conclusions In the case of the aortic valve partially closed in the initial state, the stability of the calculation process and the closure degree of the valve were relatively high, which should be given more consideration in numerical simulation. The results can be used to study the mechanical behavior of the valve and the biomechanical mechanism of the aortic root. Copyright © 2018 by the Editorial Board of Journal of Medical Biomechanics.

Keyword:

Aortic valve; Boundary condition; Finite element analysis; Numerical simulation

Author Community:

  • [ 1 ] [Liu, G.]College of Life Science and Bio-engineering
  • [ 2 ] College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Pan, Y.]College of Life Science and Bio-engineering
  • [ 4 ] College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Fu, W.]College of Robotics, Beijing Union University, Beijing, 100020, China
  • [ 6 ] [Qiao, A.]College of Life Science and Bio-engineering
  • [ 7 ] College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

  • [Qiao, A.]College of Life Science and Bio-engineering; College of Mechanical Engineering and Applied Electronics Technology, Beijing University of TechnologyChina

Show more details

Related Keywords:

Related Article:

Source :

Journal of Medical Biomechanics

ISSN: 1004-7220

Year: 2018

Issue: 2

Volume: 33

Page: 95-100

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:932/10623176
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.