Indexed by:
Abstract:
With the growing price of lithium material and associated safety concerns, there is an urgent need for developing new efficient, cost-effective battery systems as a successor for lithium ion batteries. Metal-air batteries have drawn huge attention and interest as energy storage devices due to their high theoretical energy density when Al, Zn, Ni, and Fe are used. In particular, Al-air batteries have the potential to become a promising primary battery system with their relatively low prices and significantly high energy density. In this paper, the authors report a printed Al anode for Al-air battery combined with a laser sintering method. The anode was fabricated by Al nanoparticle ink using squeezing printing. Furthermore, a laser sintering method was applied to remove the organic solvent in the slurry and increase the conductivity of the printed anode. By application of infrared laser sintering, the authors significantly improved electrical conductivity of Al nanoparticles and electrochemical performance of Al-air cells. A Pt/C coated hydrophobicity carbon paper was used for the air cathode to provide a good electrical conductivity, an oxygen flow ability, and the water vapor sealing. Gel-style KOH was introduced as the electrolyte, and waterways were also utilized in the chemical reaction. The authors show a full battery cell with a printed Al anode on flexible substrates. This microbattery can provide a 227 mWh/g energy density and a 239 mAh/g capacity at an operation voltage of 0.95 V. (C) 2018 Laser Institute of America.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF LASER APPLICATIONS
ISSN: 1042-346X
Year: 2018
Issue: 3
Volume: 30
2 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:156
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: