Indexed by:
Abstract:
A newly developed severe plastic deformation (SPD) technique, i.e. repetitive upsetting (RU), is employed to improve the strength and ductility of a Mg-Gd-Y-Zr alloy. During the RU processing, dynamic recrystallization occurs in the Mg alloy, which leads to a significant grain refinement from 11.2 mu m to 2.8 mu m. The yield strength (YS), ultimate tensile strength (UTS) and elongation increase simultaneously with increasing RU passes. The microstructural evolution is affected by processing temperatures. Dynamic recrystallization prevails at low temperatures, while dynamic recovery is the main effect factor at high temperatures. Texture characteristics gradually become random during multiple passes of RU processing, which reduces the tension-compression asymmetry of the Mg-Gd-Y-Zr alloy. (C) 2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN: 1005-0302
Year: 2018
Issue: 7
Volume: 34
Page: 1067-1075
1 0 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 50
SCOPUS Cited Count: 53
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: