Indexed by:
Abstract:
Identifying functional modules in PPI networks contributes greatly to the understanding of cellular functions and mechanisms. Recently, the swarm intelligence-based approaches have become effective ways for detecting functional modules in PPI networks. This paper presents a new computational approach based on bacterial foraging optimization for functional module detection in PPI networks (called BFO-FMD). In BFO-FMD, each bacterium represents a candidate module partition encoded as a directed graph, which is first initialized by a random-walk behavior according to the topological and functional information between protein nodes. Then, BFO-FMD utilizes four principal biological mechanisms, chemotaxis, conjugation, reproduction, and elimination and dispersal to search for better protein module partitions. To verify the performance of BFO-FMD, we compared it with several other typical methods on three common yeast datasets. The experimental results demonstrate the excellent performances of BFO-FMD in terms of various evaluation metrics. BFO-FMD achieves outstanding Recall, F-measure, and PPV while performing very well in terms of other metrics. Thus, it can accurately predict protein modules and help biologists to find some novel biological insights.
Keyword:
Reprint Author's Address:
Source :
SOFT COMPUTING
ISSN: 1432-7643
Year: 2018
Issue: 10
Volume: 22
Page: 3395-3416
4 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:161
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4