Indexed by:
Abstract:
Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb2O5.nH(2)O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N-2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160 degrees C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ENVIRONMENTAL SCIENCES
ISSN: 1001-0742
Year: 2018
Volume: 66
Page: 358-367
6 . 9 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:203
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0