Indexed by:
Abstract:
The emotion recognition was studied by using the entropy analysis of EEG signals, and an algorithm for extraction of emotion EEG features based on the combination of permutation entropy and multi fractal index was put forward. The algorithm achieves EEG feature extraction by combinative use of the parameters of permutation entropy, Hurst exponent, mass index and singular spectrum width, and achieves the emotion recognition by using Support Vector Machine (SVM). The study indicated that for one-to-one emotion recognition, the highest accuracy of the testing set was 92.8%, all higher than 80% except for excitement against fear. The highest accuracy increased by 41.9% compared with the permutation entropy, and 31.2% compared with the multi-fractal index. The classification effects of positive emotion and passive emotion were further analyzed, and the average accuracy of test set was 78.3%, respectively increased by 26.7% and 1.6% compared with the entropy and the multi-fractal feature. The method based on the combination of permutation entropy and multi-fractal index is proved to be an effective algorithm for emotion EEG feature extraction, with the capacity of sufficient obtaining the nonlinear trait and multi fractal feature information. © 2016, Inst. of Scientific and Technical Information of China. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Chinese High Technology Letters
ISSN: 1002-0470
Year: 2016
Issue: 7
Volume: 26
Page: 617-624
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: