Indexed by:
Abstract:
To solve the classification model overfitting problem caused by the high dimension and small sample properties of functional magnetic resonance imaging (fMRI) data, a feature selection framework of whole-brain fMRI data combining L1-norm regularization and L2-norm regularization in softmax regression is proposed. Firstly, the whole brain is divided into the region of interest (ROI) and the region of non-interest (RONI) in terms of the characteristics of brain cognition. Then, L2-norm regularization shrinking the weighting coefficients is used to model all voxels in ROI while L1-norm regularization with a sparse effect is employed for modeling the activated voxels in RONI. Finally, the regularized softmax regression model of whole-brain fMRI data is constructed by integrating all voxels in ROI and the activated voxels in RONI. The experimental results on Haxby datasets show that the regularization strategies of L2-norm and L1-norm effectively improve the whole-brain classification performance compared to some other methods. © 2016, Science Press. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
Year: 2016
Issue: 7
Volume: 29
Page: 641-649
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4