Indexed by:
Abstract:
In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 sub harmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system. (C) 2017 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
ISSN: 0888-3270
Year: 2018
Volume: 100
Page: 113-134
8 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:156
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 59
SCOPUS Cited Count: 66
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: