• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Lu, Junxia (Lu, Junxia.) | Chang, Ling (Chang, Ling.) | Wang, Jin (Wang, Jin.) | Sang, Lijun (Sang, Lijun.) | Wu, Shikai (Wu, Shikai.) | Zhang, Yuefei (Zhang, Yuefei.) (Scholars:张跃飞)

Indexed by:

EI Scopus SCIE

Abstract:

This study compares the microstructure and tensile properties of Ti6Al4V components fabricated by laser direct metal deposition (LDMD) additive manufacturing (AM) in the transverse and longitudinal directions. The results show anisotropic tensile properties with the transverse direction having high tensile and fracture strengths and the longitudinal direction having a high elongation and reduction of cross section. The anisotropic mechanical properties are attributed to the anisotropic microstructural distribution. The transverse tensile specimen is composed of short columnar prior-beta grains which grow perpendicular to the tensile direction, and have a lamellar structure. Along the beta grain boundary, alpha(GB) and large alpha colonies were identified. However, the longitudinal specimen shows that the long beta structure is parallel to the tensile axis and that the microstructure is composed of basket-woven alpha phases with shorter alpha plates and smaller colony sizes compared with those in the transverse specimen. The fracture mechanism induced by the anisotropic microstructure along the transverse and longitudinal directions was compared by examining the fracture process in real-time using uniaxial in-situ scanning electron microscopy (SEM) tensile testing. The results show that shear fracture, which is caused by the vertical beta grain boundaries and large alpha colonies with long alpha plates, occurs in the transverse specimen. The shear mode is the main reason behind the enhanced tensile strength and fracture strength due to the high resistance to microcrack propagation. However, in the longitudinal specimens, symmetric necking behavior due to the fine a grains resulted in uniform deformation of the grains on both sides of the grain boundaries, inducing greater elongation.

Keyword:

Additive manufacturing Titanium alloy Mechanical properties Microstructure In-situ tensile

Author Community:

  • [ 1 ] [Lu, Junxia]Beijing Univ Technol, Inst Laser Engn, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 2 ] [Chang, Ling]Beijing Univ Technol, Inst Laser Engn, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Shikai]Beijing Univ Technol, Inst Laser Engn, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Jin]Inst Microstruct & Property Adv Mat, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 5 ] [Sang, Lijun]Inst Microstruct & Property Adv Mat, Ping Le Yuan 100, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Yuefei]Inst Microstruct & Property Adv Mat, Ping Le Yuan 100, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 张跃飞

    [Lu, Junxia]Beijing Univ Technol, Inst Laser Engn, Ping Le Yuan 100, Beijing 100124, Peoples R China;;[Zhang, Yuefei]Inst Microstruct & Property Adv Mat, Ping Le Yuan 100, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

ISSN: 0921-5093

Year: 2018

Volume: 712

Page: 199-205

6 . 4 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:260

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 93

SCOPUS Cited Count: 97

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Online/Total:915/10607879
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.