Indexed by:
Abstract:
A new prediction algorithm based on Empirical model decomposition (EMD) and Support vector machine (SVM) is put forward in this paper, and this algorithm solves the problem of the hydrogen atomic clock differences prediction, which is affected by the non-linearity and non-stability. The clock differences were decomposed into Intrinsic mode functions (IMF) and the residual series. The suitable kernel function and parameters were chosen to build the different SVM for predicting each IMF and the residual series. Each prediction result was summed to obtain the clock differences prediction. Results show that the EMD-SVM algorithm is effective compared with the linear regression and single SVM. The relative prediction error is reduced from 0.4327% to 0.2371%, and the dispersion is less than other methods.
Keyword:
Reprint Author's Address:
Source :
CHINESE JOURNAL OF ELECTRONICS
ISSN: 1022-4653
Year: 2018
Issue: 1
Volume: 27
Page: 128-132
1 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:156
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: