Indexed by:
Abstract:
A kind of organic-inorganic hybrid composite with core-shell structure was successfully prepared via seed polymerization method using environmental stimuli (pH/temperature) copolymer poly(N-isopropylacryl-acrylamide)-co-poly(acrylic acid) (P(NIPAM-co-AA)) as a shell and bimodal mesoporous silica nanoparticles (BMMs) with small size of 20-50 nm as a core. The capacity of loading ibuprofen (IBU) and the subsequent release performance from resultant P(NIPAM-co-AA)@BMMs (denoted as P@BMMs) under different external conditions were investigated in detail. Meanwhile, its structural features and textural parameters were characterized using XRD, N-2 adsorption-desorption isotherms, SEM and TEM, SAXS, FT-IR, solid-state Si-29 NMR, TGA and elemental analysis techniques. The results demonstrated that P(NIPAM-co-AA) as a shell coating on the external surface of BMMs acted as temperature-pH gate valve to control release behaviors, while mesoporous BMMs as reservoir provided enough space to encapsulate IBU molecules with high loading. SAXS patterns evidently presented that P@BMMs before IBU-loading and after releasing possessed the fractal feature, suggesting their surface roughness and structural irregularities, in which the mass fractal was increased from 2.36 for BMMs to 2.41 for BMMs-MPS to 2.51 for P@BMMs, and even the transformation from the mass fractal to surface fractal for I/P@BMMs was about 2.80. In addition, three types of kinetic models (first-order, Higuchi and Koismeyer-Peppas power law) were employed to evaluate the release profiles, indicating that the drug release kinetic of P@BMMs was suitable to Korsmeyer-Peppas power law model with non-Fickian diffusion mechanism. (C) 2017 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
MICROPOROUS AND MESOPOROUS MATERIALS
ISSN: 1387-1811
Year: 2017
Volume: 254
Page: 77-85
5 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 55
SCOPUS Cited Count: 56
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: