• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, J. (Zhang, J..) | Diao, Y. (Diao, Y..) | Zhao, Y. (Zhao, Y..) (Scholars:赵艳) | Zhang, Y. (Zhang, Y..) (Scholars:张勇)

Indexed by:

Scopus

Abstract:

In this study, the flow and heat transfer characteristics of two multiport microchannel flat tubes (MMFT) which have same boundary dimensions 26 mm × 2.5 mm, but different internal structures were studied. Moreover, the enhancement of heat transfer was compared with the increase of friction factor to assess comprehensively the tube applicability for heat exchanger. For the tube with fin structure, the height of fin is 279 μm, and the ratio of fin height to hydraulic diameter is 15%. The experiment used water as working fluid is performed with Reynolds number ranging from 140 to 5900. The results show that the experimental data of friction factor and Nusselt number for smooth tube are in reasonable agreement with the conventional correlations. And the laminar-turbulent transition occurs at Re=1700, an accepted value for macrochannel. Meanwhile, laminar-turbulent transition of tube with fin structure occurs at Re=1100, earlier to the value for macrochannels. Compared with smooth tube, the significant heat transfer enhancement by using fin structure tube was obtained, while the friction factor values are also lager than that of smooth tube. The maximum heat transfer enhancement is 481% at Re=5182 with penalty of friction factor increase of 140%. A performance evaluation criterion (PEC) based on same pumping power consumption for tubes with and without fin structure was defined and calculated to evaluate the practical use. The maximum value of PEC is about 4.2, which is a good value compared with that of other researches.

Keyword:

Heat transfer enhancement; Multiport microchannel flat tube; Sawtooth fin structure; Transition

Author Community:

  • [ 1 ] [Zhang, J.]Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
  • [ 2 ] [Diao, Y.]Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
  • [ 3 ] [Zhao, Y.]Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China
  • [ 4 ] [Zhang, Y.]Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China

Reprint Author's Address:

  • [Diao, Y.]Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, China

Show more details

Related Keywords:

Related Article:

Source :

Proceedings of the 15th International Heat Transfer Conference, IHTC 2014

Year: 2014

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:441/10557551
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.