Indexed by:
Abstract:
A systemic understanding of the thermal effects on the dynamic behavior of granite is significant to thermal engineering applications such as waste disposal engineering and underground coal gasification. In the present study, scanning electron microscope (SEM) tests were carried out to evaluate the thermal effects on the geophysical properties of granite. The results show that the density decreases slightly as the temperature increases from 25 degrees C to 400 degrees C but that it decreases sharply as the temperature increases further to our maximum tested temperature of 800 degrees C. The defect rate increases slightly as temperature increases from 25 degrees C to 400 degrees C and then increases sharply as the temperature further increases to 800 degrees C. Next, ultrasonic wave tests were performed to evaluate the thermal effects on the wave velocity and P wave modulus. The results show that both the wave velocity and P-wave modulus decrease sharply and linearly below the temperature of 400 degrees C, before deceasing nonlinearly as the temperature increases to 800 degrees C. Finally, split Hopkinson pressure bar (SHPB) tests were adopted to investigate the thermal and loading rate coupling effects. The results show that the dynamic strength decreases linearly as temperature increases but increases as the impact pressure increases. However, the dynamic energy absorption capacity increases below 400 degrees C but then decreases as the temperature increases to 800 degrees C. The thermal effects on energy absorption capacity are more obvious for granite under a smaller impact pressure. (C) 2017 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED THERMAL ENGINEERING
ISSN: 1359-4311
Year: 2017
Volume: 125
Page: 94-103
6 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:165
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 273
SCOPUS Cited Count: 287
ESI Highly Cited Papers on the List: 40 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: